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Anomalous diffusion, stable processes, and generalized functions
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The evolution equations in real space and time corresponding to a class of anomalous diffusion processes are
examined. As special cases, evolution equations corresponding to stable processes are derived using the theory
of generalized functions, recovering some known results differently interpreted, and an evolution law for stable
processes of order unity.
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There has been a recent preoccupation in physics with
problem of ‘‘anomalous diffusion’’@1,2#, although stochastic
transport processes that are other than classical diffu
have been of interest for many years@3–7#. Consider a ran-
dom process that governs the positionR(t) of a moving
particle at timet, and let the average or expectation be d
noted by angular brackets. The variance of the position

Var$R~ t !%5^uR~ t !2^R~ t !&u2&5^uR~ t !u2&2u^R~ t !&u2,

measures the spread of the process. For an initially local
ensemble of noninteracting particles,AVar$R(t)% is a mea-
sure of the diameter of the ‘‘plume’’ produced as the syst
evolves.

Suppose that the variance for the process with initial c
dition R(0)50 evolves as

Var$R~ t !%;L~ t !t2n as t→`,

whereL(t) is slowly varying in the sense that for each fixe
l.0, limt→` L(lt)/L(t)51. Then there is a well-define
exponentn governing the process, and roughly speaki
R(t)'tn. The stochastic transport process is callednormal
diffusion if n51/2, and anomalous diffusionotherwise.
Anomalous diffusion is classified assubdiffusion if 0 ,n
,1/2 andsuperdiffusionif n.1/2. The superdiffusive case i
sometimes further divided, withn>1 called ballistic, and
may be augmented with those processes for wh
Var$R(t)%5` for all t.0, which in some sense correspon
to n5`.

Models based on the Wiener process, limits of rand
walks in discrete time with finite mean-square displacem
per step, and limits of continuous-time random walks w
finite mean time between steps all produce normal diffus
if the process lives in Euclidean space. Subdiffusion m
occur when a continuous-time random walk has infin
mean time between steps, and is also found in so
quenched random environment problems@8,9#. Extreme su-
perdiffusion @Var$R(t)%5`# follows when the individual
constituent displacements have infinite variance@4,7#. It is
harder to produce less drastic superdiffusion, or to de
models that encompass all possible qualitative behaviors
few parameters are tuned.

Continuous-time random walk models, with the time b
tween steps and the length of a step correlated@5–7,10#,
represent one way to produce a broad range of behavior
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their recent, very valuable review of the literature on anom
lous diffusion, Metzler and Klafter@1# have drawn attention
to possible interpretations of a model that arises natur
from a long-time limit of a continuous-time random wa
with nonclassical but uncoupled spatial and temporal sta
tics. If p(r ,t) denotes the probability density function ass
ciated with R(t), the canonical, two-exponent model fo
motion in unboundedd-dimensional Euclidean space corr
sponds~with 0 , a < 2. 0 , b . 1, andKa a constant! to

p* ~q,u!5 @ub21/~ub1Kauqua!# p̃~q,0!, ~1!

where we have introduced the spatial Fourier transform

f̃ ~q!5F$ f ~r !;r °q%5E eiq•r f ~r !ddr ,

the temporal Laplace transform

ĝ~u!5L$g~ t !;t°u%5E
0

`

e2utg~ t !dt,

and the joint Fourier-Laplace transform

h* ~q,u!5E
0

`

e2uth̃~q,t !dt5E eiq•rĥ~r ,u!ddr .

From the isotropy inq of p* (q,u), it follows that p(r ,t) is
isotropic in r . As ^uR(t)u2&>^uR(t)u&2>u^R(t)&u2, the as-
sumption that̂ uR(t)u2&,` yields ^R(t)&50 and,

LˆVar$R~ t !%;t°u‰52¹̃2p* ~q,u!uq50 ,

where¹̃ denotes the gradient operator with respect toq. The
answer is finite if and only ifa52, and in this case
L$Var$R(t)%;t°u%}u212b asu→0, so that Var$R%(t)}tb

as t→`. The canonical model~1! fails to produce moderate
superdiffusive behavior with 1/2,n,`, a defect that can be
remedied by nontrivial coupling of the interstep times a
step lengths.

We can rewrite Eq.~1! in the form

up* ~q,u!2 p̃~q,0!52Kau12buquap* ~q,u!. ~2!
©2002 The American Physical Society05-1
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The left-hand side is the joint Fourier-Laplace transform
]p/]t. Concerning the right-hand side, one may first obse
that so long as 0,b<1, for any functionf with Laplace
transformf̂,

L21$u12bf̂~u!;u°t%5
1

G~b!

]

]tE0

t f~ t8!dt8

~ t2t8!12b ,

and so the evolution equation becomes

]p

]t
52F 21H Ka

G~b!

]

]tE0

t uquap̃~q,t8!dt8

~ t2t8!12b ;q°r J . ~3!

In the simplest special casea52, this reduces to a resu
found by Metzler and Klafter@1#, namely,

]p

]t
5“

2H K2

G~b!

]

]t E0

t p~r ,t8!dt8

~ t2t8!12bJ .

If b51 also, the integral operator becomes trivial and
familiar diffusion equation

~]p/]t ! 5D“

2p ~4!

is recovered, withD5K2 the usual diffusion constant. Keep
ing b,1 retains the prospect of subdiffusion.

Metzler and Klafter@1# discuss all these matters in term
of fractional integral operators. Their viewpoint emerg
from their study of a large body of work based on variants
the radially symmetric diffusion equation. To obtain a re
space evolution equation, Metzler and Klafter propose
use of fractional integral operators over space. This strat
while mathematically acceptable, breaks the symmetry of
process, and there are tiresome complications with noni
ger powers ofeip/2.

In the subsequent discussion it will suffice to restrict o
attention to the inversion of the Fourier transform in the c
b51, since the extension of the analysis to coverb,1 is so
straightforward. We thus have to analyze

~]p/]t ! 52KaF 21$uquap̃~q,t !;q°r%. ~5!

This is actually a classic problem in the theory of the sta
distributions of Lévy, but the existing discussions are disa
pointingly incomplete@11–15#.

If we make only the assumption that probability has to
transferred continuously across surfaces via a flux vectoj ,
rather than disappearing at one point and reappearing
distant point, we are led to thecontinuity equation

~]p/]t ! 1“• j50.

At this level in the modeling, the detailed nature of the re
tion between flux vectorj and probability has not been use
For classical modeling, one usually assumesFick’s law j
52D“p, which asserts that the diffusing substance mo
to destroy concentration gradients~here, equivalently, prob
ability gradients! and we arrive at the classical diffusio
equation~4!. Since the Fourier transform of the gradient o
03510
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erator“ produces a factor2 iq, we can only rewrite Eq.~5!
as a continuity equation if we define the Fourier transform
the flux vector to be

¤̇~q,t !5Kai p̃~q,t !uqua22q. ~6!

It is natural to try to bring“p into the calculation, not only
by analogy with normal diffusion, but also because the o
coordinate-free way to introduce space derivatives ofp into
the problem and produce a vector result that scales line
with p is via“p. Identifying the right-hand side of Eq.~6! as
the transform of a convolution, we arrive at the flux equati

j ~r ,t !52KaE Fa,d~r2r 8!“p~r 8,t !ddr 8, ~7!

where

Fa,d~r !5 @1/~2p!d#E eiq•ruqua22ddq. ~8!

As the volume element in spherical polar coordinates sc
asuqud21, this integral fails to exist in the classical sense d
to divergence at the origin whend1a<2, while decay of the
integrand at infinity in the polar coordinate integration is lo
whend1a>3. A classical analytical approach is, therefor
necessarily restricted to 22d,a,32d, and even then may
be unpleasant due to delicate conditional convergence of
integral ~8!, which presents difficulties with the use of th
convolution formula.

We avoid these problems by working within the Lighthil
Temple theory of generalized functions, guided ford51 by
the brilliant but underused text of Lighthill@16#. For d51,
the continuity equation reduces to

]

]t
p~x,t !1

]

]x
j ~x,t !50, ~9!

and we need to determine the kernel

Fa,1~x!5
1

2p E
2`

`

e2 ivxuqua22dq,

to use in the one-dimensional case of Eq.~8!. From Light-
hill’s table ~p. 43 of Ref.@16#! we have the formulas

E
2`

`

e22p ixyuxuadx5
2 cos@ 1

2 p~a11!#G~a11!

~2puyu!a11 , ~10!

for aÞ0,61,62, . . . , and

E
2`

`

e22p ixyx21 sgn~x!dx522$ lnuyu1C%, ~11!

whereC is an arbitrary constant@17#. We deduce that

Fa,1~x!5
cos@ 1

2 p~a21!#G~a21!

puxua21 , aÞ1, ~12!
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F l ,t~x!52 ~1/p!$ lnuxu1const%. ~13!

The case d51 and a51. As *2`
` ]p/]x dx50, the as-

signment of the arbitrary constant becomes irrelevant,
we have

j ~x,t !5
K1

p E
2`

`

lnux2yu
]

]y
p~y,t !dy. ~14!

Although derived by the use of generalized functions, t
formula admits a sensible interpretation as an ordinary in
gral. Equations~9! and~14! constitute an evolution equatio
for the a51 stable distribution that appears to be new@18#,
and has more physical appeal than the previously der
evolution equation

~]2p/]t2! 1K1
2 ~]2p/]x2! 50, ~15!

discussed by Medgyessy@19#, which does not admit a simpl
flux interpretation.

A classical and fully rigorous verification of the correc
ness of the evolution equation may be carried out as follo
The stable distribution defined byp̃(q,t)5exp(2K1tuqu) cor-
responds in real space to the Cauchy density or Lorent
packet

p~x,t !5~K1t/p!@x21~K1t !2#21. ~16!

A little algebra shows that the corresponding flux predic
by the formula~14! is

j ~x,t !52
2K1

2t

p2 E
0

`

ln zH z1x

@~z1x!21~K1t !2#2

2
z2x

@~z2x!21~K1t !2#2J dz.

The integral can be evaluated by noting that for any ratio
function Q(z) that is free from poles on the non-negati
real axis and isO(z22) asz→`,

E
0

`

Q~z!ln z dz5
1

2 ( Res$Q~2z!~ ln z!2%,

where the complex logarithm is given its principal value~so
that 2p,argz<p!, and the predicted flux for the Cauch
density becomes, after some algebra,

j ~x,t !5~K1x/p!@x21~K1t !2#21. ~17!

The density~16! and flux ~17! are easily verified to be con
sistent with the continuity equation~9!, and the proof that the
a51 evolution law is correct is complete.

The case d51 when1,a,2. Here the flux becomes

j ~x,t !52KaE
2`

`

Fa,1~x2y!
]

]y
p~y,t !dy, ~18!

where the kernelFa,1(x2y) is given by Eq.~12!. For 1
,a,2, the kernel has an integrable singularity aty5x, is
03510
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always positive, and decays asux2yu increases. The flux atx
samples the current probability gradient throughout all spa
with greatest weight in the neighborhood ofx, but significant
contributions from remote points. The evolution equation c
be written in the form

]

]t
p~x,t !5Ka

]

]x E2`

`

Fa,1~x2y!
]

]y
p~y,t !dy. ~19!

Medgyessy@14#, in Appendix 6 of his paper, has given a
alternative evolution equation for 1,a,2 that does not ex-
hibit a flux and does not reveal the underlying continu
equation. His equation, rewritten in the notation of t
present paper, is

]

]t
p~x,t !5Ka E

2`

`

Fa,1~x2y!
]2

]y2 p~y,t !dy. ~20!

One can formally pass from Medgyessy’s evolution equat
to Eq. ~19! by one integration by parts, and the use of t
identity

~]/]x!Fa,1~x2y!52 ~]/]y!Fa,1~x2y!,

but this step is invalid since the differentiated kernel ha
nonintegrable divergence aty5x. However, we could have
arrived at Medgyessy’s form directly from the Fourier ana
sis by choosing to invert the Fourier transform as a con
lution of a kernel with]2p/]x2, rather than first extracting a
flux.

The case d51 when0,a,1. As in the preceding case
the flux is given by Eq.~18! where the kernelFa,1(x2y) is
given by Eq.~12!. For 0,a,1, the kernel is continuous
and its only misbehavior is a cusp aty5x. It is always
negative~the flux thus enhancing rather than opposing co
centration gradients! and grows asux2yu increases. It is
known that for one-dimensional stable processes with 0,a
,1, the sample paths are almost surely discontinuous a
points. For physical modeling of particle transport process
where continuity of individual particle trajectories is a phys
cal necessity, models based on stable laws of ordera,1 are
highly suspect. Our analysis shows that if one wishes to
them and preserve a flux interpretation of the transport p
cess, the flux has unpleasant features@20#.

Medgyessy’s evolution equation for 0,a,1 is ~after
some gamma function manipulations!

]p

]t
5

KaG~a21!cos@ 1
2 p~a21!#

p

3~12a!E
2`

` sgn~x2y!

ux2yua
]

]y
p~y,t !dy.

Since

~12a!sgn~x2y!

ux2yua
5

]

]x
ux2yu12a,
5-3
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it is possible to pass by purely classical means fr
Medgyessy’s equation to our flux-based equation simply
extracting anx derivative from inside the integral.

Case with d.1. Extending the generalized function ide
to isotropic problems withd.1 is straightforward. The awk-
wardness with the special casea51 encountered ford51
does not arise. One finds@21# that

E exp~2 iq•r !uqukddq5
G~ 1

2 k1 1
2 d!

G~2 1
2 k!

2k1dpd/2

ur uk1d .

Hence ford>2 and 0,a,2 we find that
di-

-
a
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th
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st
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Fa,d~r !5
2a22

pd/2

G~ 1
2 @a1d#21!

G~12 1
2 a!

ur u22d2a.

The corresponding integral~7! for the flux is classically con-
vergent for 0,a,2, provided thatp(r ,t) decays adequately
at infinity. Compare this with the result of a classical Four
analysis treatment, which would require~as noted earlier! 2
2a,d,32a. The kernelFa,d(r ) is always positive, and
decays at infinity for alld>2.

It is suggested that an application of generalized functio
from the Lighthill perspective in other areas of stochas
modeling may shed light on other subtle phenomena.
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