RAPID COMMUNICATIONS

Anomalous diffusion, stable processes, and generalized functions

PHYSICAL REVIEW E, VOLUME 65, 03510&R)

Barry D. Hughes
Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
(Received 5 September 2001; published 5 March 2002

The evolution equations in real space and time corresponding to a class of anomalous diffusion processes are
examined. As special cases, evolution equations corresponding to stable processes are derived using the theory
of generalized functions, recovering some known results differently interpreted, and an evolution law for stable
processes of order unity.
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There has been a recent preoccupation in physics with théheir recent, very valuable review of the literature on anoma-
problem of “anomalous diffusion{1,2], although stochastic lous diffusion, Metzler and Klaftefl] have drawn attention
transport processes that are other than classical diffusioto possible interpretations of a model that arises naturally
have been of interest for many yed8-7]. Consider a ran- from a long-time limit of a continuous-time random walk
dom process that governs the positiBiit) of a moving  with nonclassical but uncoupled spatial and temporal statis-
particle at timet, and let the average or expectation be de-tics. If p(r,t) denotes the probability density function asso-
noted by angular brackets. The variance of the position  ciated with R(t), the canonical, two-exponent model for

motion in unboundedl-dimensional Euclidean space corre-

Var{R(t)}={|R(t) —(R(1))|?)=(|R(1)|?) — [{R(1)}|?, sponds(with 0 < @ < 2. 0< B> 1, andK, a constantto

measures the spread of the process. For an initially localized p* (q,u)= [uf~Y/(uP+K,|q/*)]P(q,0), (1)
ensemble of noninteracting particle\éVar{R(t) is a mea-
surel of the diameter of the “plume” produced as the systeMyhere we have introduced the spatial Fourier transform
evolves.

Suppose that the variance for the process with initial con-
dition R(0)=0 evolves as F(q)=Ff(r);r Hq}=J e'9Tf(r)dr,

Var{R(t)}~L(t)t?” as t—ox,
the temporal Laplace transform

wherelL(t) is slowly varying in the sense that for each fixed
A>0, lim_ . L(\t)/L(t)=1. Then there is a well-defined
exponentv governing the process, and roughly speaking,
R(t)~t". The stochastic transport process is calfedmal
diffusion if v= 1/2, a.nd anomglous diffgsio_notherwise. and the joint Fourier-Laplace transform
Anomalous diffusion is classified asubdiffusionif 0 <wv
<1/2 andsuperdiffusiorif »>1/2. The superdiffusive case is
sometimes further divided, with=1 called ballistic, and h*(q,u):J
may be augmented with those processes for which 0
Var{R(t)}=c° for all t>0, which in some sense corresponds
to v=oo, From the isotropy img of p*(q,u), it follows thatp(r,t) is

Models based on the Wiener process, limits of randomisotropic inr. As (|R(t)|%=(|R(t)[)?=|(R(t))|?, the as-
walks in discrete time with finite mean-square displacemensumption that|R(t)|?) < yields (R(t))=0 and,
per step, and limits of continuous-time random walks with
finite mean time between steps all produce normal diffusion . — _T2n%
if the process lives in Euclidean space. Subdiffusion may HVaR(D}t—>up==V"p (q,u)|q:0,
occur when a continuous-time random walk has infinite ~
mean time between steps, and is also found in somwhereV denotes the gradient operator with respeai.tdhe
quenched random environment problef8s9]. Extreme su- answer is finite if and only ife=2, and in this case
perdiffusion [ Var{R(t)} =] follows when the individual £{Var{R(t)};t—>u}cu™"# asu—0, so that VafR}(t)=t?
constituent displacements have infinite variafiég]. It is ~ ast—oe. The canonical modéfl) fails to produce moderate
harder to produce less drastic superdiffusion, or to derivéuperdiffusive behavior with 1£22v <, a defect that can be
models that encompass all possible qualitative behaviors asrf@medied by nontrivial coupling of the interstep times and
few parameters are tuned. step lengths.

Continuous-time random walk models, with the time be- We can rewrite Eq(1) in the form
tween steps and the length of a step correldtd7,10,
represent one way to produce a broad range of behaviors. In up*(q,u)—p(q,0)= —K, u'#|q|“p* (q,u). 2

@(u)=£{g(t);th>u}=f:e’”tg(t)dt,

©

e*“tﬁ(q,t)dt=J e'9"h(r,u)ddr.
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The left-hand side is the joint Fourier-Laplace transform oferatorV produces a factoriq, we can only rewrite Eq(5)
ap/at. Concerning the right-hand side, one may first observess a continuity equation if we define the Fourier transform of
that so long as €& B=<1, for any function¢ with Laplace the flux vector to be
transforme, _

3(a,H)=K,ip(q,t)|q[“*q. (6)

PR AN A 0 1 . o .

L7Hur Po(u);u—t)= T(B) Ef (t—t)I A’ It is natural to try to bringV p into the calculation, not only

0 by analogy with normal diffusion, but also because the only
coordinate-free way to introduce space derivativep @fto

the problem and produce a vector result that scales linearly

- _1[ K, o f‘|Q|”f>(q,t')dt' . ] . with pis via Vp. Identifying the right-hand side of E¢6) as

and so the evolution equation becomes

the transform of a convolution, we arrive at the flux equation

a7 T ale o
In the simplest special case=2, this reduces to a result j(r,t)=—KaJ CDayd(r—r’)Vp(r’,t)ddr’, @)
found by Metzler and Klaftef1], namely,
ap 2{ K, 9 ftp(r,t’)dt’ where
gt | T(B) ot Jo(t—tHIA[ .
’ ®a,d(r)=[1/(27T)d]f e'd"|ql*~?d"q. 8
If B=1 also, the integral operator becomes trivial and the
familiar diffusion equation As the volume element in spherical polar coordinates scales
5 as|q|9" %, this integral fails to exist in the classical sense due
(dplot) =DV<p (4 to divergence at the origin wheht a<2, while decay of the

) ) o integrand at infinity in the polar coordinate integration is lost
is recovered, wittD =K the usual diffusion constant. Keep- \yhend+ o=3. A classical analytical approach is, therefore,
ing <1 retains the prospect of subdiffusion. _ necessarily restricted to-2d< a<3—d, and even then may
Metzler and Klafte(1] discuss all these matters in terms pg npleasant due to delicate conditional convergence of the
of fractional integral operators. Their viewpoint emergesinieqral (8), which presents difficulties with the use of the
from their study of a large body of work based on variants of.,,yolution formula.
the radially symmetric diffusion equation. To obtain a real-  \ye avoid these problems by working within the Lighthill-

space evolution equation, Metzler and Klafter propose thﬁ'emple theory of generalized functions, guided dor 1 by
use of fractional integral operators over space. This strateg¥ha prilliant but underused text of LighthilL6]. For d=1,
while mathematically acceptable, breaks the symmetry of thg, o continuity equation reduces to
process, and there are tiresome complications with noninte-
ger powers o', P P

In the subsequent discussion it will suffice to restrict our ﬁp(x,t)Jr ﬁ—xj(x,t)=0, 9
attention to the inversion of the Fourier transform in the case
B=1, since the extension of the analysis to coger1l is so and we need to determine the kernel
straightforward. We thus have to analyze

_ 1 (= :
(aplat) = =K F Hla|“Bla,t);q—>r}. (5) ‘baﬂ(x)zﬁf e '“¥|g|*"2dq,

This is actually a classic problem in the theory of the stable . ) ) )
distributions of Ly, but the existing discussions are disap-t0 use in the one-dimensional case of E8). From Light-

pointingly incompletd 11-15. hill’s table (p. 43 of Ref.[16]) we have the formulas
If we make only the assumption that probability has to be
transferred continuously across surfaces via a flux vggtor = mixylla 2co$3 m(a+1)]T(a+1)
rather than disappearing at one point and reappearing at _me |x|*dx= (2a|y[)* T ' (10)
distant point, we are led to theontinuity equation
. f F1,+2,...,
(apldt) +V -j=0. or a#0 and
At this level in the modeling, the detailed nature of the rela- f e 2mYx lsgnx)dx=—2{Inly|+C}, (11
tion between flux vectoj and probability has not been used. -

For classical modeling, one usually assunkésk’s law j
=—DVp, which asserts that the diffusing substance move
to destroy concentration gradieritsere, equivalently, prob- .
ability gradienty and we arrive at the classical diffusion @, (x)= cogzm(a—1)JI'(e—1)
equation(4). Since the Fourier transform of the gradient op- ol mx|e !

gvhereC is an arbitrary constarjtL7]. We deduce that

L a1, (12
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®| ((x)=— (1/m7){In|x| +cons}. (13)  always positive, and decays as-y| increases. The flux at
. samples the current probability gradient throughout all space,
~The case &1 and a=1. As [Z..dp/dx dx=0, the as-  jth greatest weight in the neighborhoodxpfout significant
signment of the arbitrary constant becomes irrelevant, angontributions from remote points. The evolution equation can
we have be written in the form

0

i(x t>=ﬁf°° nx—yl—p(y.dy. (14 7 7
T ) ay ED(XJ)ZK“&J'

—o0

Jd
<I>a,1(x—y)@p(y,t)dy. (19

Although derived by the use of generalized functions, this . . . .
formula admits a sensible interpretation as an ordinary inteM&ddyessy{14], in Appendix 6 of his paper, has given an
gral. Equationg9) and (14) constitute an evolution equation 2!t€rnative evolution equation for<la<2 that does not ex-

for the a=1 stable distribution that appears to be rjag], ~ hibit a flux and does not reveal the underlying continuity
and has more physical appeal than the previously derivefduation. His equation, rewritten in the notation of the

evolution equation present paper, Is
o 2

32pl at?) + K2 (9%pl 9x?) =0, 15
(F°plat") + K3 (57plox) 13 D, ix-Y) 52PYOdY. (20

J

ST PXD=K, f
discussed by Medgyes§%9|, which does not admit a simple -
flux interpretation.

A classical and fully rigorous verification of the correct-
ness of the evolution equation may be carried out as follow
The stable distribution defined ®(q,t) =exp(—K;t|g|) cor-
responds in real space to the Cauchy density or Lorentzian o — _
packet (91 IX) P o 1(X—Y) == (9l IY) P o 2(X—Y),

One can formally pass from Medgyessy’s evolution equation
to Eq. (19 by one integration by parts, and the use of the
Sdentity

p(x,1) = (K t/m)[ X2+ (K t)2] L. (16) but .this step is .invalid since the differentiated kernel has a
nonintegrable divergence gt=x. However, we could have
A little algebra shows that the corresponding flux predictecrrived at Medgyessy’s form directly from the Fourier analy-

by the formula(14) is sis by choosing to invert the Fourier transform as a convo-
lution of a kernel withg?p/9x?, rather than first extracting a
_ 2K32t (= Z+X flux.
JX)==——3 fo Inz (207t (K022 The case &1 whenO<a<1. As in the preceding case,

the flux is given by Eq(18) where the kerne®, ((x—y) is
Z—X given by Eq.(12). For 0<a<1, the kernel is continuous,
- [(z—x)2+(K1t)2]2]dZ' and its only misbehavior is a cusp wt=x. It is always
negative(the flux thus enhancing rather than opposing con-
The integral can be evaluated by noting that for any rationatentration gradienjsand grows agx—y| increases. It is
function Q(z) that is free from poles on the non-negative known that for one-dimensional stable processes withn0
real axis and i©(z ?) asz—, <1, the sample paths are almost surely discontinuous at all
points. For physical modeling of particle transport processes,
* 1 where continuity of individual particle trajectories is a physi-
L Q(z)Inzdz= EE RedQ(-2)(In2)%}, cal necessity, models based on stable laws of asdel are
highly suspect. Our analysis shows that if one wishes to use
where the complex logarithm is given its principal valse  them and preserve a flux interpretation of the transport pro-
that — m<<argz=r), and the predicted flux for the Cauchy cess, the flux has unpleasant featJ2(.
density becomes, after some algebra, Medgyessy’s evolution equation for<Qw<1 is (after
some gamma function manipulations

060 = (K m) [P+ (Kqt)?] 7

_ 1 _
The density(16) and flux(17) are easily verified to be con- a_p_ Kol (a—1)cogzm(a—1)]

sistent with the continuity equatid®), and the proof that the at ™
a=1 evolution law is correct is complete. = sgrix—y) @
The case &1 whenl<a<2. Here the flux becomes X(l—a)J eV ﬁ—p(y,t)dy.
—w | XY y
. * &
j(x,t)= —Kaf_ q)a,l(X—Y)Wp(y,t)dy’ (18 Since
where the kernefb, ;(x—y) is given by Eq.(12). For 1 (1—a)sgrix—y) =i|x— B
<a<2, the kernel has an integrable singularityyatx, is |x—y|* IX '
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it is possible to pass by purely classical means from
Medgyessy'’s equation to our flux-based equation simply by

extracting arx derivative from inside the integral.

Case with d>1. Extending the generalized function ideas
to isotropic problems witll> 1 is straightforward. The awk-
wardness with the special case=1 encountered fod=1
does not arise. One find&1] that

r(%,ﬁ_ %d) 2K+d,n.d/2

I(— i) I

| exai-ia-nlalata-

Hence ford=2 and O<a<?2 we find that
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20-2 [(Ya+d]—1)

a2 I(1-lta)

|r|27dfa.

q)a,d(r)

The corresponding integréf) for the flux is classically con-
vergent for 6< @< 2, provided thap(r,t) decays adequately
at infinity. Compare this with the result of a classical Fourier
analysis treatment, which would requif@s noted earligr2
—a<d<3—a. The kernel®, 4(r) is always positive, and
decays at infinity for ald=2.

It is suggested that an application of generalized functions
from the Lighthill perspective in other areas of stochastic
modeling may shed light on other subtle phenomena.
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